Coil compression in simultaneous multislice functional MRI with concentric ring slice-GRAPPA and SENSE.

نویسندگان

  • Alan Chu
  • Douglas C Noll
چکیده

PURPOSE Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. METHODS The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. RESULTS The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. CONCLUSION The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GRAPPA-based simultaneous multislice reconstruction using concentric ring k-space

PURPOSE: Simultaneous multislice (SMS) imaging is an effective method for accelerating fMRI and DTI because it can provide acceleration even with the single-shot acquisitions commonly used in these applications. Previous SMS methods have either focused on Cartesian trajectories [1], or used time-consuming iterative SENSE-like reconstructions on spiral data [2]. We propose a non-iterative GRAPPA...

متن کامل

The effects of coil compression on simultaneous multislice and conventional fMRI

PURPOSE: Simultaneous multislice (SMS) imaging is an increasingly popular parallel imaging method for accelerating fMRI, but typically requires array coils with many coils, and therefore much storage space and computation time. Here, we investigate the effects that coil compression can have on functional activation for both SMS and conventional fMRI. Although SMS imaging has been demonstrated u...

متن کامل

Wideband Parallel Imaging

Human lower limb images were successfully acquired with an acceleration rate of up to 8x by using wideband parallel imaging. The non-uniform multislice profile problem of this technique was successfully compensated to enhance the image quality of the outer slices. Also the signal-to-noise ratio (SNR) of this ultra fast imaging technique, wideband parallel imaging, was verified to be similar wit...

متن کامل

Two‐dimensional‐NGC‐SENSE‐GRAPPA for fast, ghosting‐robust reconstruction of in‐plane and slice‐accelerated blipped‐CAIPI echo planar imaging

PURPOSE Ghosting-robust reconstruction of blipped-CAIPI echo planar imaging simultaneous multislice data with low computational load. METHODS To date, Slice-GRAPPA, with "odd-even" kernels that improve ghosting performance, has been the framework of choice for such reconstructions due to its predecessor SENSE-GRAPPA being deemed unsuitable for blipped-CAIPI data. Modifications to SENSE-GRAPPA...

متن کامل

Simultaneous multislice imaging for native myocardial T1 mapping: Improved spatial coverage in a single breath-hold.

PURPOSE To develop a saturation recovery myocardial T1 mapping method for the simultaneous multislice acquisition of three slices. METHODS Saturation pulse-prepared heart rate independent inversion recovery (SAPPHIRE) T1 mapping was implemented with simultaneous multislice imaging using FLASH readouts for faster coverage of the myocardium. Controlled aliasing in parallel imaging (CAIPI) was u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 76 4  شماره 

صفحات  -

تاریخ انتشار 2016